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Abstract

The theory governing the propagation of light in the region near a plane strain crack tip is extended to optically
anisotropic media. As for the case of isotropic media, an incident wavefront of light is split into two independent
wavefronts. The planes of polarization of the two wavefronts lie in planes parallel and perpendicular to the crack front
only for specific crystal orientations relative to the crack front. The general functional forms for the index of refraction
of both the parallel and perpendicular wavefronts are given in terms of the principal indices of refraction, orientation of
the index ellipsoid, and the direction of propagation of the wavefront. It is demonstrated how the principal indices of
refraction and the orientation of the index ellipsoid can be calculated from the results of a finite element analysis and the
coeflicients of the elasto-optic tensor for a specific case. The characteristic equations which govern the propagation of
light in anisotropic media are solved for a specific case to calculate the path of light relative to a crack tip in a bicrystal
specimen. We also report the path of light rays approaching a mixed Mode I and Mode II crack tip in a material that is
optically isotropic in its unstrained state. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Crack opening interferometry (e.g. Liechti, 1993; Kysar, 2000a) is an optical technique commonly used
to measure normal crack opening displacement profiles of a crack in transparent materials. In principle, a
wavefront of light that approaches the two crack flanks at approximately normal incidence partially reflects
off both crack flanks. The reflected wavefronts subsequently interfere to form a set of fringes that are loci of
constant normal crack opening displacement which can be interpreted in terms of normal crack opening
displacement profile. Another optical technique used to measure crack tip parameters in transparent ma-
terials is the method of caustics (e.g. Kalthoff, 1993; Rosakis, 1993) in which incident light is transmitted
parallel to the crack flanks and crack front. Proper interpretation of this technique requires that the change
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in optical path length of the light due to stress-induced changes of index of refraction be considered in the
region of singular stress at the crack tip.

Fowlkes (1975) and Liang and Liechti (1995) raised the issue that stress induced changes in index of
refraction at the tip of a crack might also affect the correct interpretation of fringes obtained from crack
opening interferometry. They postulated that the inhomogeneous index of refraction could cause a no-
ticeable ““‘mirage” effect in which the light approaching the tip bends or deflects significantly from a straight
line path. This phenomenon could potentially invalidate the assumption of normal crack flank incidence
implicit in crack opening interferometry. In addition it could cause the interference fringes to stretch or
contract, which would lead to an incorrect interpretation of the crack opening profile.

Kysar (1998) addressed these questions by considering the properties of light as it approaches a plane
strain crack tip in the plane of plane strain. The wavefront of light splits into two independent wavefronts:
one wavefront polarized in a plane parallel to the crack front (i.e. electric displacement vector parallel to the
crack front); the other polarized in a plane perpendicular to the crack front. The wavefronts are referred to,
respectively, as the parallel wavefront and the perpendicular wavefront. The exact expression for index of
refraction of both wavefronts as a function of position and direction of propagation was derived from the
singular strain field for Mode I loading and the elasto-optic tensor. The index of refraction of the parallel
wavefront is isotropic, while the index of refraction of the perpendicular wavefront is anisotropic. In ad-
dition, since the light ray associated with each wavefront follows a separate path, each deflects a different
amount from a nominally straight line path. Kysar (1998) concluded that, depending upon the material, the
apparent position of the crack tip might change by several microns due to the mirage effect. However, the
assumption of normal crack flank incidence is not violated, and stretching and contraction of the fringes is
expected to be negligible. Therefore the stress-induced changes in index of refraction is not expected to
affect the interpretation of the interference fringes in terms of crack opening profile.

The analysis by Kysar (1998) assumed the transparent material to be optically isotropic in its unstrained
state (i.e. a polymer or a glass). In the present paper, the analysis is extended to consider the propagation of
light at normal incidence to the crack flanks in materials that are optically anisotropic in the unstrained
state (i.e. single crystals). It will be shown that an incident wavefront of light, again, splits into two in-
dependent wavefronts, but that the two planes of polarization do not necessarily lie parallel and perpen-
dicular to the crack front. However in special cases the planes of polarization can be made to lie parallel
and perpendicular to the crack front and in this configuration, it is straightforward to write a general
expression for the index of refraction experienced by both wavefronts. The characteristic set of equations of
geometrical optics in anisotropic media can then be solved numerically to determine the paths of the two
light rays. To illustrate the concepts, the paths of light rays approaching an interfacial crack tip in a copper/
sapphire bicrystal specimen used in a study by Kysar (2000b) are calculated.

In addition, Escobar (1995) attempted to measure crack parameters with a new optical technique that is
similar in spirit to both crack opening interferometry and the method of caustics. As with crack opening
interferometry, the light approaches the crack flanks with normal incidence. But instead of striking the
crack flanks, the light passes directly in front of the crack tip and, in doing so, changes slightly its angle of
incidence due to stress-induced changes of index of refraction. She attempted to relate the angle at which
the light exited the material to the applied stress intensity factor. To facilitate calculation of the change of
angle, we extend in the present study the Kysar (1998) analysis to the case of a mixed Mode I and Mode 11
crack in materials that are optically isotropic in their unstrained state.

The format of the present paper is as follows. Section 2 briefly reviews the behavior of light in an op-
tically anisotropic medium and shows under what conditions the planes of polarization of an incident
wavefront of light will be parallel and perpendicular to the crack front both before and during loading.
Section 3 presents the general functional form of the index of refraction for such a case and discusses the
characteristic set of equations which determines the path of a light ray in an anisotropic, inhomogeneous
medium. In Section 4 the concepts are illustrated by calculating the path of the light approaching the flanks
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of an interfacial crack in a copper/sapphire bicrystal. In Section 5, we generalize the results of light ap-
proaching a crack flank in an optically isotropic material to the case of a mixed Mode I and Mode 11
loading. Section 6 discusses the results and presents conclusions.

2. Planes of polarization in near crack tip region of optically anisotropic medium

It is well established (e.g. Born and Wolf, 1993) that a wavefront of light in a transparent, non-magnetic,
homogeneous, anisotropic medium splits into two independent wavefronts which are linearly polarized in
orthogonal planes. A geometrical construction called the index ellipsoid is commonly used to determine the
planes of polarization and the indices of refraction of the two wavefronts using the known direction of
wavefront propagation and the directions and values of the principal indices of refraction. The principal
indices of refraction of the index ellipsoid are defined as n} = 1/By, k = 1, 2, 3, where By are the principal
values of the second order relative dielectric impermeability tensor B;;; the directions of n; correspond to
those of B;. The two planes of polarization and the indices of refraction associated with a given direction of
light wave propagation are determined (e.g. Nye, 1985) by forming the elliptical cross-section of the index
ellipsoid that is perpendicular to the wavefront normal and passes through the center of the index ellipsoid.
The lengths of the semi-axes of the elliptical cross-section are equal to the indices of refraction, and the
directions indicate planes of polarization. In an elastic medium, the change in B;; is a function of the applied
strain, ¢;, via the relationship ABy; = pjjuén, Where p, is the fourth order elasto-optic tensor (e.g. Nye,
1985). Thus a strain can change the shape and orientation of the index ellipsoid thereby altering the planes
of polarization and indices of refraction of an incident wavefront. These concepts are generalizations of the
Maxwell-Neumann stress-optic law (e.g. Kim et al., 1987) for artificial birefringence.

In crack opening interferometry it is desirable to choose the crystal and its orientation relative to the
crack front so as to obtain planes of polarization that are parallel and perpendicular to the crack front,
because in this case the indices of refraction can be expressed in simple functional form. Two conditions
must be satisfied for this to occur in a plane strain crack. The first necessary condition is that one principal
axis of Bj; in the unstrained state must be parallel to the crack front. This ensures that the planes of po-
larization lie parallel and perpendicular to the crack front both in the unstrained state as well as in the
rotated state induced by the anti-symmetric part of the displacement gradient. In addition, since an applied
strain acts through p;;, to change the components of B;;, the form of p;;; determines whether the planes of
polarization change or remain the same under loading. Under plane strain conditions, the only non-zero
strains are the in-plane shear and normal strains. Thus, the second necessary condition requires that these
in-plane strains do not change an off-diagonal, out-of-plane component of B;;. If both conditions are
satisfied, the planes of polarization will lie parallel and perpendicular to the crack front both before and
during loading. This does not say, however, that one cannot calculate the paths of the light rays for any
other crystal orientation. But, since the planes of polarization would change with load level, the expressions
for the indices of refraction would become cumbersome.

3. Indices of refraction and geometrical optics in anisotropic media

We assume that a plane strain crack exists in a transparent medium in the x;—x, plane; the crack front
coincides with the x;-axis and that the planes of polarization of the incident wavefronts of light are parallel
and perpendicular to the crack front. Fig. 1 shows the cross-section of the index ellipsoid in the x;—x; plane.
The orientation of the index ellipsoid relative to the x;-axis is denoted by ¢ and the angle o specifies the
direction of the wavefront normal of light propagating in the x;—x, plane. The position of the wavefront is
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n, is directed
out of paper

crack

Fig. 1. Orientation of index ellipsoid relative to plane strain crack, with w equal to direction of wavefront normal, ¢ gives orientation
of index ellipsoid, r and 0 indicate position of wavefront, and n;, n, and n; are principal indices of refraction.

specified by polar position coordinates » and 6. The principal indices of refraction n; and n;, lie in the plane;
n3 is directed out of the plane.

Kysar (1998) showed that in this instance, the index of refraction of the parallel wavefront, denoted as
nj, is a function only of position. However the index of refraction of the perpendicular wavefront, denoted
as n,, is a function of both position and direction of the wavefront normal. The functional forms of the
indices of refraction are

n = ns,

2 12 2\ (2 2 (1)
ny = 3(ny + my) —5(ny —m3y)cos2(w — )]

The path of the light ray associated with each wavefront is found by solving the characteristic set of
equations of geometrical optics in anisotropic media (e.g. Kravtsov and Orlov, 1990 and references therein).
When these equations are applied to in-plane propagation of light in an optically transparent medium with
index ellipsoid as shown in Fig. 1, it can be shown (Kysar, 1998) that the characteristic set of equations is
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where the subscript on the index of refraction, n, has been dropped and w = atan(p,/p;).

Physically, the variables in the characteristic equations can be interpreted as follows: x; corresponds
parametrically to the path of the light ray in the x;—x, plane with path length s, p; = nm; is the “slowness”
vector in the direction of the wave normal, m; is the unit vector normal to wavefront, and « is the angle
between wavefront normal and light ray, which do not coincide for light propagation in an anisotropic
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medium. Since there are two independent wavefronts, the characteristic set of equations must be solved
twice: once for the parallel wavefront and once for the perpendicular wavefront. We should note that there
is potential for confusion given that it is customary to write the elasto-optic tensor as p;;; and the slowness
vector as p;; the meaning should be clear from context.

4. Path of light rays in a copper/sapphire bicrystal

The specific bicrystal configuration considered in this study is shown in Fig. 2. A single copper crystal, 3
mm in height, is diffusion bonded to a single crystal sapphire that is I mm in height. A crack is introduced
at the interface and the system is loaded with a 125 N mm~! moment such that the upper surface of the
copper crystal is in compression. Ahead of the crack, the moment is applied over the entire cross-section;
behind the crack, the load is applied only to the copper crystal. It is desired to measure experimentally the
normal crack opening displacement profile with interferometry by shining a light, as shown in Fig. 2,
through the transparent sapphire. The light partially reflects off each crack flank and when recombined,
forms a set of interference fringes that can be interpreted in terms of normal crack opening displacement. In
the case considered here, the incident wavefront initially has normal incidence (i.e. parallel to the x,-axis).
Our goal in the present study is to calculate the path of the light as it approaches the crack tip to see if the
stress-induced changes of index of refraction affect the necessary interpretation of interference fringes.

A finite element analysis of this configuration in plane strain was performed in a previous study
(Mesarovic and Kysar, 1996) using ABAQUS/Standard (1993) in order to determine the strain state. The
smallest element size in the near tip region was a square of side 0.2 um. Two different cases are considered.
In one, the copper is allowed to deform plastically; in the other, the copper remains elastic. To model plastic
flow in the copper crystal, the analysis used a subroutine (Huang, 1991) which accounts for the single
crystal plasticity; the parameters of the hardening model are discussed in Mesarovic and Kysar (1996). In
both cases, the sapphire was assumed to remain elastic. The results of these analyses are used to investigate
the behavior of the light close to the crack tip.

Sapphire (a-Al,O5) is a trigonal crystal of point group 3 m and hence its index ellipsoid is an ellipsoid of
revolution about the optical axis which coincides with the three-fold symmetry axis. The (000 1) basal
plane, which is perpendicular to the optical axis, is bonded to the (221) plane of the copper crystal; the
sapphire [1120] is parallel to the crack front. The unstrained index ellipsoid relative to the coordinate

region of interest 3 mm

X
Copper t X,

S Sapphire/\ ‘ 1 mm

A
incident light

Fig. 2. Interface crack in copper/sapphire bicrystal. Calculations of light path are performed in cross-hatched region.
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system of Fig. 2 is specified by the principal indices of refraction n; = n; = 1.758 and n, = 1.766 (Akul-
yenok et. al., 1970). Appendix A shows that the sapphire in this orientation satisfies the requirements of
Section 2 so that the incident light is polarized parallel and perpendicular to the crack front.

It is necessary to determine the principal indices of refraction ny, n,, and n3, and as well as the orientation
of the index ellipsoid ¢, in the near crack tip region of the copper/sapphire specimen indicated in Fig. 2.
This is accomplished by calculating the changes in B;; using experimentally determined values of the elasto-
optic coefficients (reported in Appendix A) and strains from the finite element analyses. Next the eigen-
values and eigenvectors of the “strained” B;; are calculated. The eigenvalues correspond to the principal
indices of refraction and the angle ¢ is the angle of rotation in the x;—x, plane between the eigenvectors of
the “unstrained” index ellipsoid and the “‘strained” index ellipsoid. In addition, local crystalline lattice
rotation (i.e. the non-symmetric part of the displacement gradient) contributes to ¢. However the FEM
results show that the lattice rotations very near the crack tip are on the order of ¢ = 0.05°, whereas the
rotation of the index ellipsoid due to the strain field is on the order of ¢ = 4°. Therefore we neglect the
rotation of the index ellipsoid due to local lattice rotations in what follows. Hence the indices of refraction,
nj and n_, and their derivatives are calculated from Eq. (1) using the numerically obtained n, n,, n3, and ¢
as well as the orientation of the wavefront normal, w.

We are now prepared to integrate the characteristic set of Eqgs. (2)-(4) to obtain the paths of the light
rays in the copper/sapphire specimen. Following Fowlkes (1975), Fig. 3 shows the geometry considered.
Initially the unit normal wavefront vector, m;, is directed in the positive x,-direction. We introduce a new
variable, &, which corresponds to the deflection of light from the nominal straight line path and write the
x1-component of the position vector of the light ray path as x; = —(&(x2) +xJ). A positive value of ¢ in-
dicates that the light deflects in the negative x;-direction. The initial position, x{, is arbitrary, but we will
consider only the special case of x) = 0. Thus the deflection of the light ray, rather than its absolute po-
sition, is calculated which is advantageous because the magnitude of the light deflection, &, is expected to be
very small as compared to the path length, s.

The fourth-order Runge—Kutta technique is used to integrate the set of ordinary differential equations
posed by Egs. (2)—(4) subject to the initial conditions x =0 mm, x5 = —1 mm, £(x}) =0, and p) =
n(x),x9, @ = n/2) which implies that p?(x?,x}, = 1/2) = 0. The predicted paths of the light rays associated
with both the perpendicular and parallel wavefronts as they traverse the sapphire are shown in Fig. 4.
The negative of the path deviation, —¢(x,), is plotted on the abscissa and the position along the x,-axis
within the sapphire is plotted on the ordinate for both the elastic and plastic FEM calculations. The figure

7|

crack tip at origin

N

|
&(x2) = i
| path of light ray
/

crack flanks

0
X =

Fig. 3. Geometry of mathematical formulation.
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Fig. 4. Paths of light parallel and perpendicular light rays in copper/sapphire bicrystal assuming both plastic and elastic copper be-
havior.

can be interpreted as being an exaggerated view of the predicted light path as the light enters the sapphire at
x3 = —1 mm and propagates to the crack flanks at x) = 0 mm. The final deviation of both light rays is on
the order of O(10~°) mm. The maximum angular deviation of a light ray from the optical axis is on the
order of O(107*) rad. Therefore light deflection and angular deviation are sufficiently small so as not to
affect the interpretation of the interference fringes.

5. Indices of refraction under mixed Mode I and Mode II loading

We now turn our attention to the case of a mixed Mode I and Mode II plane strain crack that exists in a
medium which has mechanical and optical isotropy and homogeneity in the unstrained state. Further, the
medium exhibits both linear elastic and linear optic behavior. We report the expressions for the indices of
refraction of both the parallel and perpendicular wavefronts and calculate the paths of the associated light
rays as they approach the crack tip. Following Kysar (1998), from the known mixed mode elastic strain
field it can be shown for plane strain that, within the near crack tip region where the singular strain field
dominates, the indices of refraction for the perpendicular and parallel wavefronts are

I’ZH :I’lo{l — \/§CH}"7<1/2) |:C[ICOS (g) —qHSil’l(g)] }, (5)
n, = no{l —V2e,r 12 {qlcos <§> — gy sin <§>}

— \/iclr’“/z)ﬁ\/q%l sin®6) + (g sin 0 4 2gy; cos0)” cos[2(w — ¢)]}, (6)
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where

&= 1 sinfcos(36/2) + 2tanycos(6/2)[1 — sin(6/2)sin (36/2)]
N Eatan{ —sin0sin (30/2) — 2tanysin (0/2)[1 + cos(0/2)sin (0/2) }

and n), n, are indices of refraction, respectively, of parallel and perpendicular wavefronts, », 0 is polar
position coordinates, Ky are Mode I and Mode II stress intensity factors, gin = (1 — 2v)(1 4+ v)Kiu/EV/T,

. . . K . . ) .
Mode I and Mode II strain intensity factor, iy = atan (Flll , loading phase angle, E is Young’s modulus, v is

Poisson’s ratio, ¢ = %plzné, cL = %(pn + pi)mg, B = (P — p12)/2(1 — 2v)(p11 + p12), strain induced optical
anisotropy, pi1, p12 are elasto-optical coefficients for optically isotropic material, 7y is index of refraction in
unstrained state, w is angle that wavefront normal vector makes with line 6 = 0.

Representative values of these parameters are tabulated in Kysar (1998). We note that the dimensionless
combination c, (g + g )r~"/? < 1 for any radius r that is larger than an atomic spacing. Further the strain
induced optical anisotropy parameter, 8 is of order 10~!. We are now prepared to solve for the path of the
light ray for both the perpendicular and parallel wavefronts. Since n, reduces to n if we set f =0 and
¢, = ¢y, it suffices to calculate the path of the light ray associated with #, .

First we simplify the characteristic set of equations of geometrical optics in anisotropic media in Egs.
(2)—(4) to an intuitive form that holds for the case of “‘small anisotropy”. For o < 1, the expression for the
angle between the wavefront normal and the direction of the associated light ray in Eq. (4) can be rewritten
using the binomial theorem and the Taylor expansion for cosine as

o — ——. (7

The characteristic system of differential Eqgs. (2) and (3) can then be combined and rearranged to obtain,
with coso ~ 1

d*x, 1 on, \dxy, 1 0n, 1 on,  p, da
hatlad} = 2 e, 2 Y 2 T 8
ds2+<nl 6s>ds n, 0Ox oan 6x2+nL ds’ (8)
d’ 1 on, \dx, 10 19 d
dv (1on\do _10on  10n pdo o)
ds? n, Os / ds n, Ox n, Ox; n, ds
We consider a wavefront of light which propagates nominally along the line # = —n/2 in the direction
o = 1/2 relative to Fig. 1. Eq. (8) can be simplified by applying to it the geometry of Fig. 4 and substituting
and ¢ = —x; and r = —s, with x¥ = 0. Further it can be linearized by replacing n, with ny whenever n,

occurs in a denominator and by assuming that p, =~ n, for a < 1. Finally, if both Egs. (8) and (9) are made

non-dimensional by scaling r with ry and ¢ with g7, it can be shown that the second term on both sides of

Eq. (8) are negligible when compared with the other terms. We can then write (in dimensional form) the

governing equation in the limit of small anisotropy for the deflection of the light as it approaches a crack tip
d&*¢ do 1 ony

e 10
dr?  dr n; Ox (10)

subject to the initial conditions

d
If - :O((I”()),
E(r=mry) =0,

where from Eq. (7)
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o(r) = —=2c. (qv + qu) pr- /2.

The initial radius, r, is the largest radius at which the singular term in the strain field dominates (i.e. the
radius of the K-field) and is a function of the geometry of a specimen. The initial condition for the slope is
determined by the angle o at » = (. The governing equation, Eq. (10), has a remarkable simple form which
concisely exposes the underlying physics of light propagation in an inhomogeneous medium with small
anisotropy. The first term on the right-hand side is the contribution of the anisotropy to the light deflection.
The second term is the contribution due to the inhomogeneity.

Now by substituting Eq. (6) into Eq. (10), the rate of deflection and the total deflection of the light ray
for the perpendicular wavefront subject to the initial conditions is found by simple integration. The results
(expressed in dimensional variables) valid at any radius 0 < r < ry are

déj_ _ —(1/2 r ~72)
& el e P -39 a0 - P (2) -1 )
r 1"0

1/2 12 2
mr)=—4ﬁci<ql+qu>r5/zl(%) i +Cﬂ’(l)/2[611(1—3ﬂ)+411(1—ﬁ)]l(%> —1] )

The equation governing the light path in the x,-direction can be obtained in a similar manner from Eq. (9).
It is automatically satisfied to the order O(c?¢’r,!), so Eq. (10) suffices to calculate the light path. The
analogous expressions for d¢/dr and & are obtained from Egs. (11) and (12) by setting f = 0 and sub-
stituting ¢ for ¢, . Kysar (1998) shows that the rate of deflection remains finite for all » > 4, where 4 is the
wavelength of the incident light.

As the light ray approaches the crack flanks (i.e. » — 0), the total light deflection becomes

& = oyl — qu)n”, (13)

9 = ¢ gi(1+ B) — qu(l = 5B)ny° (14)

which are valid for ¢; > 0 and for all ¢y;. Care must be taken, though, when applying these equations when
there is significant Mode II loading. Physically, such a loading often results in contact between the crack
flanks which would change the stress field and render the equations inapplicable. Other than this point, the
applicability of these solutions and the implications that they have on the field of crack opening interfero-
metry are addressed in Kysar (1998).

6. Summary and conclusions

The theory governing the propagation of light in the region near a plane strain crack tip has been ex-
tended to optically anisotropic single crystals. As with the case of optically isotropic media, the incident
wavefront of light splits into two independent wavefronts. For specific crystal orientations relative to the
crack front, the planes of polarization of the two wavefronts are parallel and perpendicular to the crack
front.

The general functional forms for the index of refraction of both the parallel and perpendicular wave-
fronts are given in terms of the principal indices of refraction, orientation of the index ellipsoid, and the
direction of propagation of the wavefront. It is demonstrated how the principal indices of refraction and the
orientation of the index ellipsoid can be calculated from results of a finite element analysis and the coef-
ficients of the elasto-optic tensor for the specific case of light propagating through a sapphire crystal. The
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rotation of the index ellipsoid due to local lattice rotation of the sapphire crystal is shown to be negligible in
this case.

The characteristic set of ordinary first order differential equations which governs the path of the light ray
through the transparent material is presented. They are solved numerically to calculate the path of the light
rays for a copper/sapphire bicrystal. The deflection of incident light close to the crack tip of the copper/
sapphire bicrystal is two orders of magnitude smaller than can be detected by optical methods. The
maximum angle of deflection of light from the straight line path is on the order of O(10~*) rad. The effect
will neither shift the apparent crack tip position nor will it change the interpretation of the normal crack
opening displacement.

We also report the indices of refraction and the path of light rays as they approach a crack tip in a
medium that is optically isotropic in its unstrained state.
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Appendix A. Planes of polarization of light in copper/sapphire specimen

This appendix illustrates how to apply the criteria of Section 2 to determine if the two planes of po-
larization of the wavefronts of light lic in planes that are perpendicular and parallel to a plane strain crack
front. The first condition states that one of the principal axes of B;; must be parallel to the crack front. The
second condition requires that the in-plane strains do not change an off-diagonal, out-of-plane component
of B;;. An example calculation using a copper/sapphire bicrystal system is shown to illustrate the procedure.

It is convenient to express the elasto-optic tensor in terms of its matrix representation. Sapphire (o-
Al,O,) is a trigonal crystal which implies that it is optically uniaxial. If, as is conventional, the optical axis is
chosen to coincide with the crystallographic x;-axis, AB;; as a function of the strain state ¢;; for the 3 m point
group is

ABi | [pn P2 p3 pa 0O O &

AB, | |po pu p3s —pa 0 0 &

ABy | | ps1 pu p3 0 0 0 & (A1)
ABy | |pmn —pa 0 pu 0 O &4 '

AB; 0 0 0 0 pu pu||ss
ABﬁ 0 0 0 0 P4 P &6

where p = (pn — p12)/2. Nye (1985) discusses how to convert from the tensor to the matrix notation.

If the x;-axis of the sapphire is chosen to be perpendicular to the plane strain crack front with the x;-axis
parallel to the crack front, the first condition is satisfied. In that case the strain vector is {0, &, 3, &, 0, O}T,
which induces {AB;, AB,, AB;, AB4,0,0}T. Since the only off-diagonal term B;; that changes is the com-
ponent which corresponds to in-plane rotations of the eigenvectors, this orientation satisfies the second
condition.

Kaminskii (1981) reports the experimentally determined values of the dimensionless elasto-optic tensor
for sapphire as p;; = —0.25, p33 = —0.23, p;» = —0.038, p;3 = 0.005, p3; = —0.032, py = —0.1, p1y = 0.02,
and py; = 0.01.
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